Individuals Round 1 States 2017

3 pts 1. Determine the Greatest Common Factor for 154 and 242.

4 pts 2. What is the probability of choosing an odd prime number from the set of the first 50 positive integers?

5 pts 3. Two lines intersect at (4, 5). Each line crosses the line x = 10. One crosses at (10, 10)and the other at (10, -3). Find the sum of the values of the y-coordinates of the y-intercepts of both lines.

Ans. _____

Individuals Round 2 States 2017

3 pts 1. Solve ax + b = cx - 1 for x.

Ans. _____

4 pts 2. Three equilateral triangles, each with a height of 6, form an isosceles trapezoid. Find the area of the trapezoid. Express in simplest form.

Ans._____

5 pts 3. If the equation of the parabola, having points (6, 0), (2, -4) and (10, 0), takes on the form $y = ax^2 + bx + c$ or $x = ay^2 + by + c$, find a + b + c.

Ans. _____

Ans. _____

Ans. _____

3 pts 1. The mean of the set of numbers x, 5, -2, x, 7, x, 9 is 4. What is the sum of the mean, median, mode and range?

Ans._____

4 pts 2. The volume of a rectangular pyramid is 40. The length and width of the base, and the height form three consecutive integers. Find the sum of these three dimensions.

Ans. _____

5 pts 3. Find all values of x, such that $|x^2-4| \ge |4x|$.

Ans. _____

Individuals Round 4 States 2017

3 pts 1. Find all pairs of positive prime numbers whose sum is 24. Express answer in ordered pair form: (smaller, larger)

Ans._____

4 pts 2. The sum of the measures of angles A, B, C, D is 180°. \angle B is the complement of \angle C, $m \angle A = 2(m \angle B), m \angle C = 1.25 (m \angle D)$. Find the $m \angle A + m \angle B$.

Ans. _____

5 pts 3. Find all value(s) of x such that $\sqrt{9x+12} - \sqrt{3x-2} = \sqrt{6x+2}$.

Ans._____

3 pts 1. Evaluate $\begin{vmatrix} 2 & -3 & 4 \\ 4 & 2 & -3 \\ 3 & 4 & -2 \end{vmatrix}$. **Ans.**

4 pts 2. If $x * y = 2x - y^2$ and x # y = x/y, find (2 * 7) # (7 * 2) in simplest form.

Ans._____

5 pts 3. The ellipse $9x^2 + 4y^2 - 18x + 8y - 23 = 0$ is moved 4 units to the right, then raised 5 units and finally rotated 90° about the center of the ellipse. What are the coordinates of the endpoints of the major axis once it has been moved and rotated?

Ans._____

Individuals Round 6 States 2017

3 pts 1. An item was sold for \$25.97 after a 6% sales tax was charged. How much money was paid for the sales tax?

Ans._____

4 pts 2. If
$$\frac{x^{a^2}}{x^{b^2}} = x^{24}$$
, where x > 1 and a + b = 4. Find the value of a – b.

Ans._____

5 pts 3. $\log_5 6 + \log_{625} 2 + \log_{25} 3 = \log_5 N$. Find *N* in simplest radical form.

Ans._____

Team Round 1 States 2017

4 pts 1. In the circle,
$$PB = \frac{2}{3}CP$$
. If $AP = 4$, $P \xrightarrow{C} B$
find the measure of DP. (1) Ans. _____ **4 pts**

4 pts 2. A rectangular pyramid has base dimensions of 2 yards 1 foot 3 inches by 1 yard 2 inches. Its height is 16 inches. Find its volume in cubic feet.

(2) Ans_____ 4 pts

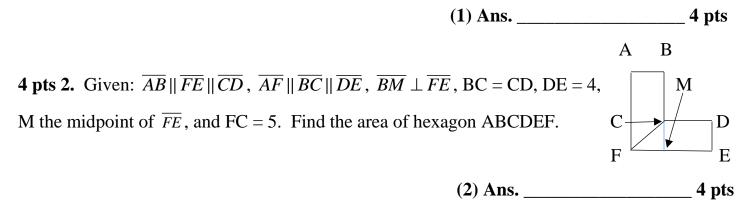
6 pts 3. The bill for Cable TV, Internet and telephone service is changing. Currently Cable is 60% of the bill. Internet service is 20% of the bill. Telephone service is 20% of the bill. Internet is increasing by 50% over its former price. Telephone service is staying at the same price. Cable is increasing by 25% of its former price. The bill for the first month of changes is \$250. What would have been the bill using the former charges?

(3) Ans. _____6 pts 6 pts 4. If x + y + 2z = 1, $3x - 4y - 5z = 4\frac{1}{2}$ and 4x + 3y + 2z = 2, find x + y + z. (4) Ans. _____6 pts

6 pts 5. Simplify: $\frac{2x+3}{x+5} - \frac{3x+2}{x-5} + \frac{2x^2+13x+55}{x^2-25}$ (5) Ans. _____ 6 pts 8 pts 6. At what point does the function $f(x) = \frac{4}{x-1} - \frac{x+3}{x^2-1}$ cross one of its asymptotes?

(6) Ans. _____ 8 pts

(7) Ans. _____ 8 pts


8 pts 7. Series A =
$$a_1, a_2, a_3, \dots$$
; Series B = b_1, b_2, b_3, \dots ; Series C = $a_1 + b_1, a_2 + b_2, a_3 + b_3, \dots$.

Series A and B are arithmetic. In Series A: the 21^{st} term is 345 and the 35^{th} term is 527. In Series B: the 17^{th} term is 287 and the 38^{th} term is 602. What is the sum of the first 38 terms of C?

8 pts 8. Find all θ where $0^{\circ} \le \theta < 360^{\circ}$ for which $\cos^2 \theta \csc \theta - \cot \theta = \sin \theta$.

Team Round 2 States 2017

4 pts 1. $a^{5/4} \cdot b^{1/6} \cdot c^{3/2} = \sqrt[q]{a^n b^p c^r}$, where n, p, r, q are the smallest possible integers. Find the value of n + p + r + q.

6 pts 3. Ben takes 12 hrs. to do a certain job. Al can do the same job in 16 hrs. Al starts the job at 6:00 AM. Ben comes to work at 8:00 AM. Before they finish Al takes a 2 hour lunch break. To the nearest minute at what time will they finish the job? Specify AM or PM.

(3) Ans. _____ 6 pts
6 pts 4. If
$$\log_{x-2} \left[(x^3 - 6x^2 + 12x - 8)(\sqrt{x-2}) \right] = n$$
, find *n*. (4) Ans. _____ 6 pts

6 pts 5. If
$$\frac{2+3i}{4-i}(1+i)+(2-i)^{-1}=a+bi$$
, find $a + b$ in simplest form

(5) Ans. _____6 pts

8 pts 6. Find the domain of
$$f(x)$$
, if $f(x) = \frac{3}{1 - \frac{2}{x - \frac{1}{x - 2}}}$.

8 pts 7. Quadrilateral ABCD has coordinates: A(-5, 12), B(-3, -9), C(10, -2) and D(16, 21). Find the area of the quadrilateral.

(7) Ans. _____ 8 pts 8 pts 8. If $x \neq -3, -1, \text{ or } 3/5$, find all value(s) of x so that $\frac{x+2}{x+3} - \frac{x-2}{x+1} = \frac{2x+1}{5x-3}$.

Blue Relay Seat A States 2017

The lines 8x - 5y = -3 and 4x - 3y = -5 intersect at point A. Find the sum of the coordinates of A.

Pass back: 2A = Your answer.

Blue Relay Seat B States 2017

Car A travels at 80 mph and car B travels at 90 mph on an oval 2 mile track. How many miles does B travel before he gains a lap on A?

Pass back: $\frac{X+B}{2}$ B = Your answer X = The number you receive.

Blue Relay Seat C States 2017

Two opposite angles of a kite measure 60° and 90°. If each of the longer pair of sides is 12, its area takes on the form $m + p\sqrt{q}$. Find the value of m + p + q.

Pass back: 1.5X + C C = your answer X = The number you receive.

Blue Relay Seat D States 2017

Find the largest value of x which does not satisfy: |2x-5| < 4x+3.

Pass back: DX - 2 D = Your answer X = The number you receive

Blue Relay Seat E States 2017

A sock drawer has two pairs of brown socks, 3 pairs of blue socks and 3 pairs of black socks. Two socks are selected at random from the drawer. What is the probability that they are both the same color?

Pass in:
$$\frac{X}{E}$$
 E = Your answer X = The number you receive

Green Relay Seat A States 2017

The lines 9x + 7y = -3 and 4x + 5y = 10 intersect at point B. Find the product of the coordinates of B.

Pass back: $-\frac{1}{2}A$ A = Your answer

Green Relay Seat B States 2017

Car A travels at 80 mph and car B travels at 90 mph on an oval 2 mile track. How many miles does A travel before B gains a lap on A?

Pass back: 2X - B B = Your answer X = The number you receive.

Green Relay Seat C States 2017

Two opposite angles of a kite measure 60° and 90°. If each of the longer pair of sides is 6, its area takes on the form $m + p\sqrt{q}$. Find the value of m + p + q.

Pass back: 2C - X C = Your answer X = The number you receive

Green Relay Seat D States 2017

Find the smallest value of x which does not satisfy |2x-5| > 4x+3.

Pass back: X - 7D D = Your answer. X = The number you receive.

Green Relay Seat E States 2017

A sock drawer has two pairs of brown socks, 3 pairs of blue socks and 3 pairs of black socks. Two socks are selected at random from the drawer. What is the probability that they are not the same color?

Pass in: $\frac{X}{F}$ E = Your answer X = The number you receive.

Pink Relay Seat A States 2017

If $\frac{15x^3y^2 \cdot 16x^2y^5}{24x^4y^4} = ax^m y^n$, find the value of *amn*.

Pass back: $\frac{1}{3}$ A = Your answer

Pink Relay Seat B States 2017

Mark has \$3.32. Larry has \$4.48. How much money in dollars should Mark give Larry, so that Mark will then have only one-half as much as Larry?

Pass back: 10BX B = Your answer X = The number you receive.

Pink Relay Seat C States 2017

An 8-15-17 triangle is similar to a smaller triangle whose shortest side is 6. What is the area of the smaller triangle?

Pass back: 4C - X C = Your answer X = The number you receive

Pink Relay Seat D States 2017

If
$$\begin{bmatrix} 4 & 3 \\ 2 & -1 \\ 5 & 4 \end{bmatrix} \cdot \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$$
, find the value of $a + b + c + d + e + f$.
Pass back: X - $\frac{D}{3}$ D = Your answer X = The number you receive.

Pink Relay Seat E States 2017

If $0^{\circ} \le \theta < 360^{\circ}$, find the positive difference between the maximum and minimum values of the solutions for the equation $\tan^2 \theta + \sin^2 \theta = 2 - \cos^2 \theta$.

Pass in: $X + \frac{E}{10}$ E = Your answer X = The number you receive

Yellow Relay Seat A States 2017

If
$$\frac{30x^5y^7 \cdot 24x^2y^4}{36x^3y^3} = ax^m y^n$$
, find $\frac{am}{n}$

Pass back: 2A A = Your answer

Yellow Relay Seat B States 2017

Mark has \$3.50. Larry has \$4.30. How much money in dollars should Mark give Larry so that Mark will have one fifth as much as Larry?

Pass back: BX B = Your answer X = The number you receive.

Yellow Relay Seat C States 2017

A 9-12-21 triangle is similar to a larger triangle whose second largest side is 30. What is the perimeter of the larger triangle?

Pass back: $\frac{4C+20}{X}$ C = Your answer X = The number you receive.

Yellow Relay Seat D States 2017

If
$$\begin{bmatrix} 4 & 3 \\ 2 & -1 \\ 5 & 4 \end{bmatrix} \cdot \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$$
, find the value of $a + b + c - (d + e + f)$.

Pass back: 2X - D D = Your answer X = The number you receive.

Yellow Relay Seat E States 2017

If $0^{\circ} \le \theta < 360^{\circ}$, find the positive difference between the maximum and minimum values for the solutions of the equation: $\tan^2 \theta + \cos^2 \theta = 4 - \sin^2 \theta$.

Pass in: X - $\frac{E}{10}$ E = Your answer X = The number you receive.

Solutions – Individuals Round 1

- 1. $154 = 2 \cdot 7 \cdot 11, 242 = 2 \cdot 11 \cdot 11.$ GCF = 2(11) = 22. Ans. 22
- 2. PROBLEM CHANGED: Answer: 7/25 or 0.28 or 28% Ans. 7/25
- 3. (4, 5), (10, 10) \rightarrow Slope = 5/6, y = 5/6x \rightarrow 5x 6y = -10, y-i = 5/3.

$$(4, 5), 10, -3) \rightarrow \text{Slope} = -8/6, y = -8/6x \rightarrow 8x + 6y = 62, y-i = 31/3.$$
 Sum = 36/3. Ans. 12

Individuals Round 2

1.
$$ax + b = cx - 1 \Rightarrow ax - cx = -b - 1 \Rightarrow (a - c)x = -b - 1 \Rightarrow x = \frac{-b - 1}{a - c} = \frac{b + 1}{c - a}$$
. Ans. $\frac{b + 1}{c - a}$
2. Upper base is $8\sqrt{3}$ long, lower base is $4\sqrt{3}$ long. Area = 1/2 (6)($12\sqrt{3}$) = $36\sqrt{3}$. Ans. $36\sqrt{3}$
3. For zeroes: $y = a(x - 6)(x - 10)$, for (2, -4): $-4 = a(-4)(-8)$, $a = -1/8$, $y = -1/8(x - 6)(x - 10)$
 $y = -\frac{1}{8}x^2 + 2x - 7\frac{1}{2}$. $-\frac{1}{8} + 2 - 7\frac{1}{2} = 2 - 7 = 2 - 7\frac{5}{8} = -5\frac{5}{8}$
Individuals Round 3
1. $3x + 19 = 4(7)$, $3x = 9$, so $x = 3$. Mean = 4, median = 3, mode = 3, range = 11. Ans. 21
2. $(x - 1)(x)(x + 1)/3 = 40 \Rightarrow x^3 - x = 120 \Rightarrow x^3 - x - 120 = 0 \Rightarrow (x - 4)(x - 5)(x - 6) = 0$.
L + W + H = 15. Ans. 15
3. Critical points for $|x^2 - 4| \ge |4x|$ are when (1) $x^2 - 4 = 4x$ and (2) $x^2 - 4 = -4x$. In (1):
 $x^2 + 4x - 4 = 0 \Rightarrow x = \frac{-4 \pm \sqrt{16 - 4(-4)}}{2} = \frac{-4 \pm \sqrt{32}}{2} = -2 \pm 2\sqrt{2}$. In (2): $x^2 + 4x - 4 = 0 \Rightarrow$
 $\frac{4 \pm \sqrt{16 - 4(-4)}}{2} = \frac{4 \pm \sqrt{32}}{2} = 2 \pm 2\sqrt{2}$. Since $\sqrt{2}$ is approximately 1.4, then in (1): $-2 - 2\sqrt{2} = -4$.8,
 $-2 + 2\sqrt{2} = -2$, $2 + 2\sqrt{2} = 4$.8, and $2 - 2\sqrt{2} = 2$. Placing these on a number line:
Plugging in interval points: -5: 21 ≥ 20, yes;

-4.8 -.2 .2 4.8 -2:
$$0 \ge 4$$
, no; $0: 4 \ge 0$, yes; $2: 0 \ge 8$, no; $5: 21 \ge 20$, yes
Ans. $\mathbf{x} \le -2 - 2\sqrt{2}$ or $2 - 2\sqrt{2} \le \mathbf{x} \le -2 + 2\sqrt{2}$ or $\mathbf{x} \ge 2 + 2\sqrt{2}$
Individuals Round 4

1. Primes less than 24: 2, 3, 5, 7, 11, 13, 17, 19, 23.Ans. (5, 19), (7, 17), (11, 13)2. Let C = x. Then A = 180 - 2x, B = 90 - x, C = x, d = $4/5x \Rightarrow 270 - \frac{6}{5}x = 180$, $90 = \frac{6}{5}x$.

x = 75. So A = 180 - 150 = 30, and B = 90 - 75 = 15. A + B = 45. Ans. 45
3.
$$\sqrt{9x+12} - \sqrt{3x-2} = \sqrt{6x+2} \Rightarrow 9x + 12 - 2\sqrt{9x+12}\sqrt{3x-2} + 3x - 2 = 6x + 2 \Rightarrow$$

 $6x + 8 = 2\sqrt{9x+12}\sqrt{3x-2} \Rightarrow 3x + 4 = \sqrt{27x^2 + 18x - 24} \Rightarrow 9x^2 + 24x + 16 = 27x^2 + 18x - 24$
 $0 = 3x^2 - 6x - 40 \Rightarrow 0 = (3x + 4)(3x - 5), \text{ so } x = -\frac{4}{3} \text{ or } \frac{5}{3} - \frac{4}{3} \text{ does not work.}$ Ans. 5/3

Individuals Round 5

1.
$$\begin{vmatrix} 2 & -3 & 4 \\ 4 & 2 & -3 \\ 3 & 4 & -2 \end{vmatrix} = -8 + 27 + 64 - (24 - 24 + 24) = 83 - 24 = 59.$$
 Ans. 59

2.
$$x * y = 2x - y^2$$
 and $x # y = x/y$. $2 * 7 = 2(2) - 7^2 = -45$. $7 * 2 = 2(7) - 2^2 = 10$.
-45 # 10 = -4510 = -4.5 Ans. -4.5

3.
$$9(x^2 - 2x + 1) + 4(y^2 + 2y + 1) = 23 + 13 = 36$$
 or $\frac{(x-1)^2}{4} + \frac{(y+1)^2}{9} = 1$ has center at (1, -1). If

moved 4 units to the right, the center would be (5, -1). If the raised 5 units, the center would now be at (5, 4). If now rotated 90° then the endpoints of the major axis would now end up on the horizontal axis: $(5 \pm 3, 4) = (8, 4)$ and (2, 4). Ans. (8, 4) and (2, 4)

Individuals Round 6

1.
$$1.06x = 25.97, x = 25.97/1.06 = 24.50.$$
 Tax $= 25.97 - 24.50 = \$1.47$ Ans. $\$1.47$
2. $\frac{x^{a^2}}{x^{b^2}} = x^{24} \Rightarrow x^{a^2-b^2} = x^{24}$, thus $(a-b)(a+b) = 24 \Rightarrow a-b = \frac{24}{a+b} = \frac{24}{4} = 6.$ Ans. 6

3.
$$\log_5 6 + \log_{625} 2 + \log_{25} 3 = \log_5 N \Rightarrow \log_5 6 + \log_5 2^{\frac{1}{4}} + \log_5 3^{\frac{1}{2}} = \log_5 6 \cdot 2^{\frac{1}{4}} \cdot 3^{\frac{2}{4}} = \log_5 6^{\frac{4}{18}}.$$

Ans. $6^{\frac{4}{18}}$

Team Round 1

1. AP(PB) = CP(DP)
$$\rightarrow 4(2/3x) = x(DP) \rightarrow 4(2/3) = DP = 8/3 = 2\frac{2}{3}$$
. Ans. $2\frac{2}{3}$

- 2. Converting each to feet: $\frac{1}{3} \left(\frac{29}{4} \right) \left(\frac{4}{3} \right) \left(\frac{19}{6} \right) = \frac{1}{3} \left(\frac{551}{18} \right) = \frac{1}{3} \left(30 \frac{11}{18} \right) = 10 \frac{11}{54}$ Ans. $10 \frac{11}{54}$
- 3. Original bill: Cable + Internet + Telephone: .6x + .2x + .2x, new bill: 1.25(.2x) + 1.5(.2x) + .2x = 250 → 1.25x = 250, so x = 200.
 Ans. 200

4. (1)
$$x + y + 2z = 1$$
, (2) $3x - 4y - 5y = 4\frac{1}{2}$, (3) $4x + 3y + 2z = 2$. -(1) + (3) and 5(1) + 2(2):
(4) $3x + 2y = 1$ and (5) $11x - 3y = 14$. $3(4) + 2(5)$: $9x + 6y = 3$ and $22x - 6y = 28$. Adding
these two $31x = 31$, so $x = 1$. In (4): $3(1) + 2y = 1$, so $y = -1$. In (1): (1) + (-1) + $2z = 1$,
so $z = \frac{1}{2}$. $x + y + z = \frac{1}{2}$.
5. $\frac{2x+3}{x+5} - \frac{3x+2}{x-5} + \frac{2x^2 + 13x + 55}{x^2 - 25} \Rightarrow \frac{(2x+3)(x-5) - (3x-2)(x+5) + 2x^2 + 13x + 55}{(x-5)(x+5)} \Rightarrow \frac{2x^2 - 7x - 15 - (3x^2 + 17x + 10) + 2x^2 + 13x + 55}{(x-5)(x+5)} \Rightarrow \frac{x^2 - 11x + 30}{(x-5)(x+5)} \Rightarrow \frac{(x-5)(x-6)}{(x-5)(x+5)}$
6. $f(x) = \frac{4}{x-1} - \frac{x+3}{x^2-1} = \frac{4(x+1)}{(x-1)(x+1)} - \frac{x+3}{x^2-1} = \frac{4x+4-x-3}{x^2-1} = \frac{3x+1}{x^2-1}$. A function cannot cross a
vertical asymptote, but it can cross a slant or horizontal one. So $f(x) = \frac{3x+1}{x^2-1}$, as x increases
without bound, $f(x)$ tends to 0. $f(x) = 0$ is a horizontal asymptote. Setting these equal to each
other tells where they intersect: $\frac{3x+1}{x^2-1} = 0$. So $3x + 1 = 0$, or $x = -1/3$. The point is (-1/3, 0).
Ans. (-1/3, 0)

7. In Series A: (1) 345 = a + 20d; (2) 527 = a + 34d. (2) – (1): 182 = 14d, so d = 13. In (1): $345 = a + 20(13) \Rightarrow a = 345 - 260 = 85$. So Series A = 85 + 13d.

In Series B: (1) 287 = a + 16d and (2) 602 = a + 37d. (2) – (1): 315 = 21d, so d = 15. In (1): $287 = a + 16(15) \Rightarrow a = 287 - 240 = 47$. So Series B = 47 + 15d. This makes Series C equal to C = 132 + 28d. The sum of the first 38 terms: 38^{th} term = 132 + 28(37) = 132 + 1036 = 1068; 38(132+1168) = 10(1200) = 24700

Sum =
$$\frac{38(132+1108)}{2}$$
 = 19(1300) = 24700. Ans. 24,700

8.
$$\cos^2\theta\csc\theta - \cot\theta = \sin\theta \rightarrow \frac{\cos^2\theta}{\sin\theta} - \frac{\cos\theta}{\sin\theta} = \sin\theta \rightarrow \cos^2\theta - \cos\theta = \sin^2\theta \rightarrow \theta$$

 $\cos^2 \theta - \cos \theta = 1 - \cos^2 \theta \rightarrow 2\cos^2 \theta - \cos \theta - 1 = 0 \rightarrow (2\cos \theta + 1)(\cos \theta - 1) = 0$. So $\cos = 1$, which is at 0° which cannot be used since $\csc 0^\circ$ is undefined; or $\cos \theta = -1/2$, which is at 120° or 240°.

Ans. 120° or 240°

Team Round 2

1.
$$a^{5/4} \cdot b^{1/6} \cdot c^{3/2} = a^{\frac{15}{12}} \cdot b^{\frac{2}{12}} \cdot c^{\frac{18}{12}} = \sqrt[12]{a^{15}b^2c^{18}}, 12 + 15 + 2 + 18 = 47.$$
 Ans. 47

2. FM = 3, since
$$\Delta$$
FCM is a 3-4-5 Δ . Therefore ME = CD = BC = 3. Thus the area of quadrilateral ABMF = 3(7) = 21, and the area of Quadrilateral CDEM = 12. Ans. 33
3. $\frac{1}{16}(2+T-2)+\frac{1}{12}T=1 \rightarrow 3T+4T = 48 \rightarrow 7T = 48$, so $T = 6\frac{6}{7}$ hrs. $\frac{6}{7}(60) = \frac{360}{7} = 51\frac{3}{7}$ min
Since Ben started at 8:00 AM, he finished at 2:51 PM to the closest minute. Ans. 2:51 PM
4. $\log_{x-2}(x^3-6x^2+12x-8)(\sqrt{x-2}) = n \rightarrow x^3-6x^2+12x-8 = (x-2)^3$ Ans. $3\frac{1}{2}$
5. $\frac{2+3i}{4-i}(1+i)+(2-i)^{-1} \rightarrow \frac{(2+3i)(1+i)}{4-i} + \frac{1}{2-i} \rightarrow \frac{-1+5i}{4-i} + \frac{1(2+i)}{(2-i)(2+i)} \rightarrow \frac{(-1+5i)(4+i)}{(4-i)(4+i)} + \frac{1(2+i)}{5}$
 $\frac{-9+19i}{17} + \frac{2+i}{5} = \frac{5(-9+19i)+17(2+i)}{85} = \frac{-45+95i+34+17i}{85} = \frac{-11+112i}{85}$. $a + b = \frac{101}{85}$. Ans. 101/85
6. $f(x) = \frac{3}{1-\frac{2}{x-\frac{1}{x-2}}}$, $x \neq 2$; $f(x) = \frac{3}{1-\frac{2}{\frac{x^2-2x-1}{x-2}}} = \frac{3}{1-\frac{2x-4}{x^2-2x-1}}$, $x = \frac{2\pm\sqrt{4-4(-1)}}{2} = 1\pm\sqrt{2}$
So $x \neq 1 \pm \sqrt{2}$. $f(x) = \frac{3}{x^2-2x-1}(2x-4) = \frac{3}{x^2-4x+2} = \frac{3x^2-6x-3}{x^2-4x+3}$, $x^2-4x+3=0 \rightarrow 2$

So
$$x \neq 1 \pm \sqrt{2}$$
. $f(x) = \frac{3}{\frac{x^2 - 2x - 1 - (2x - 4)}{x^2 - 2x - 1}} = \frac{3}{\frac{x^2 - 4x + 3}{x^2 - 2x - 1}} = \frac{3x^2 - 6x - 3}{x^2 - 4x + 3}, \ x^2 - 4x + 3 = 0$

(x-3)(x-1) = 0, so $x \neq 1$ or 3. Ans. All Reals except 1, 2, 3 or $1 \pm \sqrt{2}$

7. Using determinants for the area of $\triangle ABC$ + area of $\triangle ACD$:

$$\frac{1}{2} \begin{vmatrix} -5 & 12 & 1 \\ -3 & -9 & 1 \\ 10 & -2 & 1 \end{vmatrix} = \frac{1}{2} (45 + 120 + 6 + 90 - 10 + 36) = \frac{1}{2} (287) = 143 \frac{1}{2}$$
$$\frac{1}{2} \begin{vmatrix} -5 & 12 & 1 \\ 10 & -2 & 1 \\ 16 & 21 & 1 \end{vmatrix} = \frac{1}{2} (10 + 192 + 210 + 32 + 105 - 120) = \frac{1}{2} (429) = 214 \frac{1}{2}.$$
 Ans. 358

8. $\frac{x+2}{x+3} - \frac{x-2}{x+1} = \frac{2x+1}{5x-3} \Rightarrow (x+2)(x+1)(5x-3) - (x-2)(x+3)(5x-3) = (2x+1)(x+3)(x+1) \Rightarrow$ $(x^2+3x+2)(5x-3) - (x^2+x-6)(5x-3) = (2x+1)(x^2+4x+3) \Rightarrow (2x+8)(5x-3) = 2x^3+9x^2+10x+3 \Rightarrow$ $10x^2+34x-24 = 2x^3+9x^2+10x+3 \Rightarrow 0 = 2x^3 - x^2 - 24x + 27.$ 3 $\begin{vmatrix} 2 & -1 & -24 & 27 \\ & 6 & 15 & -27 \\ & 2 & 5 & -9 & 0 \end{vmatrix}$ So x = 3 and for $2x^2 + 5x - 9 = 0$: $x = \frac{-5 \pm \sqrt{25-4(-18)}}{4} = \frac{-5 \pm \sqrt{97}}{4}.$ Ans. 3 or $\frac{-5 \pm \sqrt{97}}{4}$

Blue Relay Seat A

(1) 8x - 5y = -3 and (2)4x - 3y = -5: (1) -2(2): -5y + 6y = -3 + 10, y = 7. In (2): 4x - 3(7) = -54x = 16, so x = 4. 4 = 7 = 11. Pass: 2A = 22. Ans. A = 11, Pass: 22

Blue Relay Seat B

Car A: 80T = D. Car B: 90T = D + 2. 90T = 80T + 2, 10T = 2, so T = 1/5. 80(1/5) = 16. So car A travelled 16 miles and car B 18 miles. Pass: $\frac{X+B}{2} = \frac{22+18}{2} = 20$. Ans. B = 18, Pass: 20

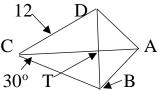
Blue Relay Seat C

In the kite at right $\angle DAB$ is a right angle, AD = AB, DC = BCand BC = 12. DB = 12, $CT = 6\sqrt{3}$ and AT = 6. Since $\overline{AC} \perp \overline{BD}$ then the area is half the product of the diagonals:

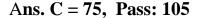
Area
$$=\frac{1}{2}(12)(6+6\sqrt{3}) = 36+36\sqrt{3}$$
. m + p + q = 36 + 36 + 3 = 75.

Pass: 1.5X + C = 1.5(20) + 75 = 30 + 75 = 105

Blue Relay Seat D


|2x-5| < 4x+3, critical points area where (1) 2x - 5 = 4x + 3 or (2) 2x - 5 = -4x - 3. In (1):

-8 = 2x, so x = -4. In (2): 6x = 2, so x = 1/3. Plugging in interval points: -5: 15 < -17, no;


0: 5 < 3, no; 1: 3 < 7, yes. So x < 1/3. Largest value not satisfying is 1/3. Pass: DX - 2 = (1/3)(105) - 2 = 35 - 2 = 33. -4 1/3 Ans. D = 1/3, Pass: 33

Blue Relay Seat E

2 pairs brown, 3 pairs blue, 3 pairs black. P(2 same color): 2 brown or 2 blue or 2 black \rightarrow

$$\frac{{}_{4}C_{2} + {}_{6}C_{2} + {}_{6}C_{2}}{{}_{16}C_{2}} = \frac{6+15+15}{120} = \frac{36}{120} = \frac{3}{10}.$$
 Pass: $\frac{X}{E} = 33 \div \frac{3}{10} = 110.$ Ans. $E = 3/10$, Pass: 110

Green Relay Seat A

(1)
$$9x + 7y = -3$$
, (2) $4x + 5y = 10$. 5(1) $-7(2)$: $45x - 28x = -15 - 70 \rightarrow 17x = -85$, $x = -5$. In (1):
9(-5) $+7y = -3$, $7y = 42$, $y = 6$. $-5(6) = -30$. Pass: $-(1/2)(-30) = 15$. Ans. A = -30, Pass: 15

Green Relay Seat B

Refer to Blue Seat B: 80(1/5) = 16. Pass: 2X - B = 2(15) - 16 = 14. Ans. B = 16, Pass: 14

Green Relay Seat C

Refer to Blue Seat C: $\frac{1}{2}(6)(3+3\sqrt{3}) = 9+9\sqrt{3}$. m + p + q = 21. Pass: 2C - X = 2(21) - 14 = 28.

Ans. C = 21, Pass: 28

Green Relay Seat D

The solution to this inequality is x < 1/3. Thus, 1/3 is the smallest value that does NOT satisfy the problem. Pass: X - 7D = 28 - 7(1/3) = 77/3. Ans. D = 1/3, Pass: 77/3

Green Relay Seat E

From Blue Seat E, the complement is 7/10. Pass: $\frac{X}{E} = \frac{77}{3} \cdot \frac{10}{7} = \frac{110}{3}$. Ans. E = 7/10, Pass: 110/3

Pink Relay Seat A

$$\frac{15x^3y^2 \cdot 16x^2y^5}{24x^4y^4} = ax^m y^n = 10xy^3, \text{ ann} = 30. \text{ Pass: } \frac{1}{3}A = \frac{1}{3}(30) = 10. \text{ Ans. A} = 30, \text{ Pass: } 10$$

Pink Relay Seat B

$$3.32 - x = \frac{1}{2}(4.48 + x) \rightarrow 6.64 - 2x = 4.48 + x \rightarrow 2.16 = 3x$$
, so $x = .72$.

Pass: 10BX = 10(.72)(10) = 72.

Ans. B = .72, Pass: 72

Pink Relay Seat C

Since the 8-15-17 Δ is a right Δ , its area is 60. The ratio of the areas of the two Δ 's is $\left(\frac{4}{3}\right)^2 = \frac{16}{9}$.

Thus
$$\frac{16}{9} = \frac{60}{x}$$
, $16x = 60(9)$, $x = \frac{15(9)}{4} = \frac{135}{4} = 33\frac{3}{4}$. Pass: $4C - X$: $4\left(\frac{135}{4}\right) - 72 = 63$.

Ans. C = $33\frac{3}{4}$, **Pass: 63**

Pink Relay Seat D

$$\begin{bmatrix} 4 & 3 \\ 2 & -1 \\ 5 & 4 \end{bmatrix} \cdot \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 32 \\ -7 & 6 \\ 2 & 41 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}. a + b + c + d + e + f = 75. Pass: X - \frac{D}{3} = 63 - \frac{75}{3} = 38.$$

Ans. D = 75, Pass: 38

Pink Relay Seat E

 $\tan^{2}\theta + \sin^{2}\theta = 2 - \cos^{2}\theta \implies \tan^{2}\theta + \sin^{2}\theta + \cos^{2}\theta = 2 \implies \tan^{2}\theta + 1 = 2 \implies \tan^{2}\theta = 1 \implies$ $\tan\theta = \pm 1, \text{ thus } \theta = 45, 135, 225, 315. 315 - 45 = 270. \text{ Pass: } X + \frac{E}{10} = 38 + \frac{270}{10} = 65.$

Ans. E = 270, Pass: 65

Ans. B = 2.20, Pass: 44

Yellow Relay Seat A

 $\frac{30x^5y^7 \cdot 24x^2y^4}{36x^3y^3} = 20x^4y^8 = ax^m y^n, \ \frac{am}{n} = \frac{20 \cdot 4}{8} = 10. \ \text{Pass: } 2A = 20. \ \text{Ans. } A = 10, \text{Pass: } 20$

Yellow Relay Seat B

$$3.50 - x = (1/5)(4.30 + x) \rightarrow 17.50 - 5x = 4.30 + x \rightarrow 13.20 = 6x$$
, so $x = 2.20$.

Pass: BX = (2.20)(20) = 44.

Yellow Relay Seat C

The 9-12-21 Δ has a perimeter of 42. So $\frac{12}{42} = \frac{30}{x}$, $12x = 30(42) \Rightarrow x = 5(21) = 105$.

Pass:
$$\frac{4C+20}{X} = \frac{4(105)+20}{44} = \frac{420+20}{44} = 10.$$
 Ans. C = 105, Pass: 10

Yellow Relay Seat D

From Pink Seat D: 1 + 32 - 7 - (6 + 2 + 41) = 26 - 49 = -23. Pass: 2X - D = 2(10) - (-23) = 20 + 23 = 43. Ans. D = -23, Pass: 43

Yellow Relay Seat E

 $\tan^2 \theta + \cos^2 \theta = 4 - \sin^2 \theta$, as in Pink Seat E, $\tan^2 \theta = 3 \Rightarrow \tan \theta = \pm \sqrt{3}$, therefore

 $\theta = 60, 120, 240, 300. 300 - 60 = 240.$ Pass: X - $\frac{E}{10} = 43 - \frac{240}{10} = 19.$ Ans. E = 240, Pass: 19

Answer Sheet – States 2017

Individuals Round 1	Individuals Round 5	Team Round 1
1. 22	1. 59	1. $2\frac{2}{3}$ or 8/3
2. 7/25	24 ¹ / ₂ or -9/2	2. $10\frac{11}{54}$ or 551/54
3. 12	3. (8, 4) and (2, 4)	3. 200 or \$200
Individuals Round 2	Individuals Round 6	4. 1/2
1. $\frac{b+1}{c-a}$	1. 1.47 or \$1.47	5. $\frac{x-6}{x+5}$
2. 36 $\sqrt{3}$	2. 6	6. (-1/3, 0)
3. $-5\frac{5}{8}$ or $-45/8$	3. $6\sqrt[4]{18}$	7. 24,700
Individuals Round 3		8. 120, 240 or 120°, 240°
1. 21		Team Round 2
2. 15		1. 47 7. 358
3. $x \le -2 - 2\sqrt{2}$ or $2 - 2\sqrt{2}$	$\sqrt{2} \le \mathbf{x} \le -2 + 2\sqrt{2} \text{ or } \mathbf{x}$	$\geq 2 + 2\sqrt{2}$ 2. 33 8. $\frac{-5 \pm \sqrt{97}}{4}$ or 3
Individuals Round 43. 2:51 PM		
1. (5, 19), (7, 17), (11, 13) 4. 3 ¹ / ₂ or 7/2 or 3.5		
2. 45 or 45°		5. 101/85
3. 5/3		6. All Reals $\neq 1 \pm \sqrt{2}$, 1,
	Rela	ys 2 or 3
Blue Ans. Pass Gr	een Ans. Pass P	nk Ans. Pass Yellow Ans. Pass
A 11 22	A -30 15	A 30 10 A 10 20
B 18 20 I	B 16 14	B .72 72 B 2.20 44
C 75 105	C 21 28	C $33\frac{3}{4}$ 63 C 105 10
D 1/3 33 1	D 1/3 77/3	D 75 38 D -23 43
E 3/10 110 I	E 7/10 110/3	E 270 65 E 240 19